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Abstract
We consider learning algorithms induced by regularization methods in the regression

setting. We show that previously obtained error bounds for these algorithms using a-priori
choices of the regularization parameter, can be attained using a suitable a-posteriori choice
based on validation. In particular, these results prove adaptation of the rate of convergence
of the estimators to the minimax rate induced by the ”effective dimension” of the problem.
We also show universal consistency for this class methods.
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1. Introduction

We show that previous results in [2] about rates of convergence for regularization meth-
ods using a-priori choices of the regularization parameter, can be attained using a suitable
a-posteriori choice based on validation. We also show universal consistency for this class
methods. The framework for semi-supervised statistical learning theory is the same one
considered in [2]. The algorithms we consider are based on the formalism of regularization
methods for linear ill-posed inverse problems in their classical setting (see for example [11]
for general reference). Some popular algorithms from this class are: regularized least-
squares, truncated SVD, Landweber method and ν-method.

The paper is organized as follows. In Section 2 we focus on a-priori choices of the
regularization parameter for regularization methods. Theorem 1 shows universal consis-
tency for a large class of choice rules, and Theorem 2 shows specific rates of convergence
under suitable prior assumptions (parameterized by the constants r, s, Cr and Ds) on the
unknown probability measure ρ. Unlabelled data are added to the training set in order to
improve the rates for a certain range of the parameters r and s.

In Section 3 we consider a validation technique for the a-posteriori choice of the reg-
ularization parameter. Theorem 3 shows how error bounds for the estimators fz̃,λ, with
a-priori choices of λ, can be transferred to the estimators fztot which use the validation
examples zv in ztot = (z̃, zv) to determine λ. The subsequent corollaries are applications
of Theorem 3 to the choices of λ described in Section 2.

In Sections 4 and 5 we give the proofs of the results stated in the previous Sections,
using some lemmas from [2].

2. A-priori choice of the regularization parameter.

We consider the setting of semi-supervised statistical learning. We assume that Y ⊂
[−M, M ] and we let the supervised part of the training set be equal to

z = (z1, . . . , zm),

with zi = (xi, yi) drawn i.i.d. according to the probability measure ρ over Z = X × Y .
Moreover we assume that the unsupervised part of the training set is (xu

m+1, . . . , x
u
m̃), with

xu
i drawn i.i.d. according to the marginal probability measure over X, ρX . For sake of

brevity we also introduce the complete training set

z̃ = (z̃1, . . . , z̃m̃),

with z̃i = (x̃i, ỹi), where we introduced the compact notations x̃i and ỹi, defined by

x̃i =

�
xi if 1 ≤ i ≤ m,
xu

i if m < i ≤ m̃,

and

ỹi =

�
m̃
m

yi if 1 ≤ i ≤ m,
0 if m < i ≤ m̃.

It is clear that, in the supervised setting, the semi-supervised part of the training set
is missing, whence m̃ = m and z̃ = z.

In the following we will study the generalization properties of a class of estimators fz̃,λ

belonging to the hypothesis space H: the RKHS of functions on X induced by the bounded
Mercer kernel K (in the following κ = supx∈X K(x, x)). The learning algorithms that we
consider, have the general form

fz̃,λ = Gλ(Tx̃) gz,(1)

where Tx̃ ∈ L(H) is given by,

Tx̃f =
1

m̃

m̃X
i=1

Kx̃i 〈Kx̃i , f〉H ,
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gz ∈ H is given by,

gz =
1

m̃

m̃X
i=1

Kx̃i ỹi =
1

m

mX
i=1

Kxiyi,

and the regularization parameter λ lays in the range (0, κ]. We will often used the shortcut

notation λ̇ = λ
κ
.

The functions Gλ : [0, κ] → R, which select the regularization method, will be charac-
terized in terms of the constants A and Br in [0, +∞], defined as follows

A = sup
λ∈(0,κ]

sup
σ∈[0,κ]

|(σ + λ)Gλ(σ)|(2)

Br = sup
t∈[0,r]

sup
λ∈(0,κ]

sup
σ∈[0,κ]

|1−Gλ(σ)σ|σtλ−t, r > 0.(3)

Finiteness of A and Br (with r over a suitable range) are standard in the literature
of ill-posed inverse problems (see for reference [11]). Regularization methods have been
recently studied in the context of learning theory in [12, 8, 7, 9, 1].

The main results of the paper, Theorems 1 and 2, describe the convergence rates of
fz̃,λ to the target function fH. Here, the target function is the “best” function which can
be arbitrarily well approximated by elements of our hypothesis space H. More formally,
fH is the projection of the regression function fρ(x) =

R
Y

ydρ|x(y) onto the closure of H
in L2(X, ρX).

The convergence rates in Theorem 2, will be described in terms of the constants Cr and
Ds in [0, +∞] characterizing the probability measure ρ. These constants can be described
in terms of the integral operator LK : L2(X, ρX) → L2(X, ρX) of kernel K. Note that the
same integral operator is denoted by T , when seen as a bounded operator from H to H.

The constants Cr characterize the conditional distributions ρ|x through fH, they are
defined as follows

Cr =

�
κr
L−r

K fH


ρ
if fH ∈ Im Lr

K

+∞ if fH 6∈ Im Lr
K

, r > 0.(4)

Finiteness of Cr is a common source condition in the inverse problems literature (see
[11] for reference). This type of condition has been introduced in the statistical learning
literature in [6, 16, 3, 15, 4].

The constants Ds characterize the marginal distribution ρX through the effective di-
mension N (λ) = Tr

�
T (T + λ)−1

�
, they are defined as follows

Ds = 1 ∨ sup
λ̇∈(0,1]

q
N (λ)λ̇s, s ∈ (0, 1].(5)

Finiteness of Ds was implicitly assumed in [3, 4].
The next theorem shows (strong) universal consistency (in probability) for the estima-

tors fz̃,λ under mild assumptions on the choice of λ. The function |x|+, appearing in the

text of Theorem 1, is the “positive part” of x, that is x+|x|
2

.

Theorem 1. Let {z̃m}∞m=1 be a sequence of training sets composed of m labelled examples
drawn i.i.d. from a probability measure ρ over Z, and m̃m −m ≥ 0 unlabelled examples
drawn i.i.d. from the marginal measure of ρ over X. Let the regularization parameter
choice, λm : N→ (0, κ], fulfill the conditions

lim
m→∞

λm = 0,(6)

lim
m→∞

√
mλm = ∞.(7)
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Then, if Br̄ < +∞ for some r̄ > 0, it holds 1

lim
m→∞

‖fz̃m,λm − fH‖ρ

P
= 0.

Theorem 2 below is a restatement in a slightly modified form of Theorem 2 in [2]. In
particular the introduction of the parameter q > 1 will be useful when we will merge this
result with Theorem 3 in the proof of Corollary 2.

Theorem 2. Let r > 0, s ∈ (0, 1] and α ∈ [0, |2− 2r − s|+]. Furthermore, let m and λ

satisfy the constraints λ ≤ ‖T‖ and

λ̇ = q

�
4Ds log 6

δ√
m

� 2
2r+s+t1

,(8)

for some q ≥ 1, δ ∈ (0, 1/3) and t1 defined in eq. (10). Finally, assume m̃ ≥ 4 ∨mλ̇−α.
Then, with probability greater than 1− 3δ, it holds

‖fz̃,λ − fH‖ρ ≤ qrEr

�
4Ds log 6

δ√
m

� 2r−t2
2r+s+t1

,

where

Er = Cr (30A + 2(3 + r)Br + 1) + 9MA,(9)

t1 = |2− 2r − s|+ − α,(10)

t2 = |1− 2r − 2s− t1|+ .(11)

The proofs of the above Theorems is postponed to Section 4.

3. Adaptation.

In this section we show the adaptation properties of the estimators obtained by a
suitable data-dependent choice of the regularization parameter. The main results of this
section are obtained assuming that

fH = fρ,(12)

this is true for every ρ when the underlying kernel K is universal (see [17]). In fact for
this class of kernels the RKHS H is always dense in L2(X, ρX). The Gaussian kernel is a
popular instance of a kernel in this family.

Let the validation set

zv = (zv
1 , . . . , zv

mv ),

be composed of mv labelled examples zv
i = (xv

i , yv
i ) drawn i.i.d. from the probability

measure ρ over Z = X × Y . The validation set zv is, by assumption, independent of the
training set z̃, and these two sets define the learning set

ztot = (z̃, zv),

which represents the total input of the adaptive learning algorithm. Following the nota-
tions of the previous Section, we let m̃ be the total number of examples in z̃, and m the
number of its labelled examples.

1We say that the sequence of random variables {Xm}m∈N converges in probability to
the random variable X (and we write limm→∞Xm =P X or Xm→P X), if for every ε >
0, limm→∞ P [|Xm −X| ≥ ε] = 0. This is equivalent to say that, for every δ ∈ (0, 1),
P [|Xm −X| ≥ ε(m, δ)] ≤ δ, with limm→∞ ε(m, δ) = 0.
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Now let us explain how zv is used for the choice of λ. We consider the finite set of
positive reals Λm depending on m, the number of labelled examples in z̃, and the data-
dependent choice for the regularization parameter is

λ̂zv = argmin
λ∈Λm

1

mv

mvX
i=1

(TMfz̃,λ(xv
i )− yv

i )2,(13)

where the truncation operator TM : L2(X, ρX) → L2(X, ρX) is defined by

TMf(x) = (|f(x)| ∧M) signf(x).

The final learning estimator, whose adaptation properties are investigated in this Sec-
tion, is defined as follows

fztot = TMfz̃,λ̂zv
.(14)

Theorem 3 below is the main result of this Section and shows an important property
of the estimator fztot . It will be used to extend to fztot convergence results similar to the
ones obtained in the previous Section.

Theorem 3. Let ρ, K, m, m̃, mv, Λm, δ ∈ (0, 1), ε > 0 and λm ∈ Λm be such that with
probability greater than 1− δ, it holds

‖fz̃,λm − fρ‖ρ ≤ ε.

Then, with probability greater than 1− 2δ, it holds

‖fztot − fρ‖ρ ≤ ε̂,

with

ε̂2 = 2ε2 +
80M2

mv
log

2 |Λm|
δ

.

The proof of Theorem 3 is postponed to Section 5.
The first corollary of Theorem 3 proves universal consistency for the estimators f tot

z

under mild assumptions on the cardinalities of the grids Λm and validation sets zv.

Corollary 1. Let K be a universal kernel, Q be a constant greater than 1, and define

Λm = {κ, κQ−1, . . . , κQ−|Λm|+1},(15)

with

|Λm| = ω(1).(16)

Moreover let {ztot
m }∞m=1 be a sequence of learning sets drawn according to a probability

measure ρ over Z. Assume ztot
m = (z̃m, zv

m), with the training sets z̃m composed of m la-
belled examples and m̃m−m ≥ 0 unlabelled examples, and zv

m the validation sets composed
by mv

m = ω(log |Λm|) examples. Then, if Br̄ < +∞ for some r̄ > 0, it holds

lim
m→∞

fztot
m
− fρ


ρ

P
= 0.

Proof. The result is a corollary of theorems 1 and 3. The universality of K enforces
the equality (12) (see [17]). Condition (16) implies that the regularization parameter

λm = κQ−(blog log mc∧|Λm|), which belongs to Λm, fulfills the assumptions (6) and (7).
Hence, using the assumption on mv

m, we get that for every δ ∈ (0, 1), with probability
greater than 1− 2δfztot

m
− fρ

2

ρ
≤ o(1) +

80M2

ω(log |Λm|) log
2 |Λm|

δ
→ 0.

¤
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The second corollary proves explicit rates for the convergence of f tot
z to fρ over specific

prior classes defined in term of finiteness of the constants Cr and Ds. The main assumption
is the requirement mv ≥ m/ log m. Since this constrain can be fulfilled still being mv

asymptotically negligible with respect to m, the rates (expressed in terms of m) that are
obtained in the second part of the corollary are minimax optimal over the corresponding
priors (see [4]).

Corollary 2. Let K be a universal kernel. Consider a learning set ztot with
mv ≥ m

log m
and m̃ ≥ 4 ∨m1+η, for some constants η ≥ 0, r > 0, and s ∈ (0, 1]. Define

Λm as in eq. (15) with Q an arbitrary constant greater than 1 and

η

α
logQ m + 1 ≤ |Λm| ≤ m,(17)

with α defined by eq. (20).
Moreover assume that for some δ ∈ (0, 1/6), m is large enough that it holds

Q

�
4Ds log 6

δ√
m

� 2η
α

≤ κ−1 ‖T‖ .(18)

Then, with probability greater than 1− 6δ

‖fztot − fρ‖ρ ≤ 4(QrErDs + 3M) log(6m/δ) m
− 1

2
2r−t2

2r+s+t1 ,(19)

where Er, t1 and t2 are the constants defined in equations (9), (10) and (11) substituting

α = |2− 2r − s|+ ∧ η

1 + η
(2r + s + |2− 2r − s|+).(20)

In particular, if r + s ≥ 1
2

and η =
|2−2r−s|+

2r+s
, and assuming

2 logQ m + 1 ≤ |Λm| ≤ m,(21)

and

Q

�
4Ds log 6

δ√
m

� 2
2r+s

≤ κ−1 ‖T‖ ,

with probability greater than 1− 6δ, it holds

‖fztot − fρ‖ρ ≤ 4(QrErDs + 3M) log(6m/δ) m− 1
2

2r
2r+s .

Proof. The result is a corollary of theorems 2 and 3. The universality of K enforces the
equality (12) (see [17]).

First, from equations (20) and (10), by simple algebra we get

η

α
=

1

2r + s + t1
.

Therefore condition (18) is equivalent to

λ̇q = q

�
4Ds log 6

δ√
m

� 2
2r+s+t1 ≤ κ−1 ‖T‖ ∀q ∈ [1, Q],

and condition λ̇ ≤ κ−1 ‖T‖ in the text of Theorem 2 is verified by λ̇q for every q ∈ [1, Q].
Moreover, since Ds ≥ 1 and δ ≤ 1/6, for every q ∈ [1, Q] we can write

m̃ ≥ 4 ∨m1+η = 4 ∨m
�
m− η

α

�−α

≥ 4 ∨mλ̇−α
q ,

which shows that also the other assumption of Theorem 2 is verified.
Hence, by Theorem 2 we get that for every q ∈ [1, Q], with probability greater than

1− 3δ, it holds

‖fz̃,λ − fρ‖ρ ≤ ε = QrEr

�
4Ds log 6

δ√
m

� 2r−t2
2r+s+t1

.
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The next step is verifying that for some q̄ ∈ [1, Q], λq̄ = κλ̇q̄ ∈ Λm, and hence applying
Theorem 3.

In fact, from definition (15), assumption (17) and Proposition 5, it is clear that

minΛm ≤ κm− η
α ≤ λ1 ≤ λq̄ ≤ λQ ≤ ‖T‖ ≤ κ = maxΛm,

for some q̄.
Applying Theorem 3, we get that with probability greater than 1 − 6δ it holdsf tot

z − fρ


ρ
≤ ε̂,

with, using again condition (17) and the assumption mv ≥ m
log m

, the chain of inequalities

ε̂ =

�
ε2 +

80M2

mv
log

6 |Λm|
δ

� 1
2

≤
�

ε2 +
80M2

m
log2 6m

δ

� 1
2

≤ ε +
12M√

m
log

6m

δ

≤ 4QrErDs log(6/δ) m
− 1

2
2r−t2

2r+s+t1 + 12M log(6m/δ) m− 1
2

≤ 4(QrErDs + 3M) log(6m/δ) m
− 1

2
2r−t2

2r+s+t1 ,

which concludes the proof of the first part of the Corollary.
The second part of the Corollary is an instantiation of the previous result. In fact by

equations (20) and (10), the assumption η =
|2−2r−s|+

2r+s
implies α = |2− 2r − s|+ and

t1 = 0. Moreover from the assumption r + s ≥ 1
2

and eq. (11) we get t2 = 0, and noticing

that η
α

= 1
2r+s

≤ 2, it is clear that condition (21) implies condition (17).
¤

4. Proofs of Theorems 1 and 2

In this section we give the proof of Theorems 1 and 2. We use various propositions
taken [2], which we state without proof.

4.1. Before proving Theorem 1, we begin showing some preliminary propositions. The
first one is a technical result about sequences of real numbers.

Proposition 1. Let {ai}i∈N and {bi}i∈N be two non-increasing sequences of reals in the
interval (0, 1) with

lim
i→∞

ai = 0,

lim
i→∞

bi = 0.

Then there exists a sequence {ci}i∈N of reals in the interval (0, 1) such that, defining
di = log ci/ log bi, the following properties hold,

i) {di}i∈N is a non-increasing sequence of positive reals.
ii) {ci}i∈N is a non-increasing sequence of positive reals, with

ci ≥ ai ∀i ∈ N,

lim
i→∞

ci = 0.

Proof. We consider the sequence {ci}i∈N of positive numbers constructed by the recursive
rule

c1 = a1,

ci+1 = ai+1 ∨ (bi+1)
log ci
log bi .

Let us prove point i) by induction.
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Since by assumption a1 and b1 belong to (0, 1), by construction d1 = log c1
log b1

= log ai
log bi

> 0.

Now, for i ≥ 1 assume di > 0, then by construction, either ci+1 = (bi+1)
di , and hence

di+1 =
log ci+1
log bi+1

= di > 0, or ci+1 = (bi+1)
di+1 = ai+1 ≥ (bi+1)

di , and hence, since ai+1

and bi+1 belong to (0, 1), it holds

di+1 =
log ai+1

log bi+1
> 0,

(bi+1)
di+1 ≥ (bi+1)

di ⇒ di+1 ≤ di.

Let us now prove point ii).
First, by construction ci ≥ ai > 0. Moreover, again by construction, either ci+1 = ai+1,

and hence,

ci+1 = ai+1 ≤ ai ≤ ci,

or ci+1 = (bi+1)
di and hence, since di > 0 by point i), it holds

ci+1 = (bi+1)
di ≤ (bi)

di = ci.

Therefore the sequence {ci}i∈N is non-increasing and ci ≤ c1 = a1 < 1.
Finally, we prove that limi ci = 0.
Let us assume the there exists an infinite increasing sequence of naturals {i(k)}k∈N,

such that

ci(k) = ai(k) ∀k ∈ N.

Since, by assumption, limi ai = 0, then limk ci(k) = 0. Therefore, since we already
proved that {ai}i∈N is non-increasing, limi ci = 0. Which proves the Proposition, if
{i(k)}k∈N exists.

If {i(k)}k∈N does not exist, by construction, there exists I ∈ N such that

ci+1 = (bi+1)
di ∀i ≥ I.

Therefore, recalling the definition of di, by induction, it follows

ci = (bi)
dI ∀i > I.

Recalling that dI > 0 and limi bi = 0, the relation above proves that, also in this case,
limi ci = 0.

¤

The next proposition introduces the functions f tr
λ and shows some simple results related

to them.

Proposition 2. For any λ > 0 let the truncated function f tr
λ be defined by

f tr
λ = PλfH(22)

where Pλ is the orthogonal projector in L2(X, ρX) defined by

Pλ = Θλ(LK),(23)

with

Θλ(σ) =

�
1 if σ ≥ λ,
0 if σ < λ.

(24)

Then the function a : (0, κ] → R, defined by

a(λ) =
f tr

λ − fH


ρ
,(25)

is non-decreasing and fulfills the following properties

0 ≤ a(λ) ≤ M ∀λ ∈ (0, κ],(26)

lim
λ→0

a(λ) = 0.(27)
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Proof. Recall that the self-adjoint integral operator LK has a countable eigensystem

{(λi, φi)}∞i=1 with positive eigenvalues decreasing to zero (see [5]). Moreover L
1
2
K is an

isometry between L2(X, ρX) and H (again, see [5]). Therefore, since fH is the projection
of fρ over the closure of H in L2(X, ρX), it holds

fH =

∞X
i=1

| 〈fρ, φi〉ρ |2φi.

Hence, by the definition of f tr
λ , and recalling that Y ⊂ [−M, M ], we get

0 ≤ a(λ)2 =
X

λi<λ

| 〈fρ, φi〉ρ |2 ≤
∞X

i=1

| 〈fρ, φi〉ρ |2 ≤ ‖fρ‖2ρ ≤ M2.

Monotonicity and convergence to zero for a(λ) follow from the relation above by standard
arguments on convergent series of positive numbers. ¤

The next proposition is used in the proof of Theorem 1.

Proposition 3. Let r̄ be a positive number. Then, there exists a function

R : (0, 1] → (0, r̄]

such that

κR(λ̇)
L−R(λ̇)

K PλfH


ρ
≤ 4M, ∀λ̇ ∈ (0, 1],(28)

lim
λ→0

λ̇R(λ̇) = 0.(29)

Proof. Let {λi, φi} be the eigensystem of the positive compact operator LK (we also use

the shortcut notation λ̇i = κ−1λi). First, if the range of LK is finite dimensional, the

choice R(λ̇) = r̄ fulfills trivially the required conditions. Second, from definition (25), it
is clear that if the sequence {a(λi)}i has only a finite number of positive elements, fH
belongs to the finite dimensional range of the projector Pλ̄, for some positive λ̄, and the

choice R(λ̇) = r̄ is again a trivial solution.
Therefore in the following we assume λi > 0 and a(λi) > 0 for every i ∈ N. Moreover,

from Proposition 5, λi ≤ κ, and by eq. (26), a(λ) ≤ M . Hence we can apply Proposition
1 to the non-increasing sequences {ai}i and {bi}i defined by

ai =
a(λi)

2M
,

bi =
λi

2κ
.

The function R is defined in terms of the sequence {di}i constructed in Proposition 1
as follows

R(λ) =

�
r̄ if λ1 < λ ≤ 1,
r̄di/(r̄ ∨ d1) if λi+1 < λ ≤ λi, i ≥ 1.

Equality (29) can be proved, recalling that by Proposition 1 ci = bdi
i ≤ λ̇di

i goes to zero
as i →∞, and hence

lim
λ→0

λ̇R(λ̇) = lim
i→∞

λ̇
R(λ̇i)
i = lim

i→∞

�
(2bi)

di

�r̄/(r̄∨d1)

≤ 2r̄
�

lim
i→∞

ci

�r̄/(r̄∨d1)

= 0.
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Since by Proposition 1 {di}i is a sequence of non-increasing positives, then R is non-
decreasing. Therefore, defining fi = 〈fH, φi〉ρ, we can write

κ2R(λ̇)
L−R(λ̇)

K PλfH
2

ρ
=

X
λ̇i≥λ̇

f2
i λ̇

−2R(λ̇)
i ≤

X
i

f2
i λ̇

−2R(λ̇i)
i

=
X

i

f2
i

�
(2bi)

di

�−r̄/(r̄∨d1)

�
bdi
i = ci < 1

�
≤

X
i

f2
i c−1

i

(ci > ai) ≤
X

i

f2
i a−1

i = 2M
X

i

f2
i a(λi)

−1

= 2M

∞X
k=0

X
2−k−1<a(λi)/M≤2−k

f2
i a(λi)

−1

≤ 2

∞X
k=0

2k+1
X

2−k−1<a(λi)/M≤2−k

f2
i0@a(λ)2 =

X
λi≤λ

f2
i

1A ≤ 4M2
∞X

k=0

2−k = 8M2,

which proves inequality (28) and concludes the proof. ¤

We now state four propositions from [2]. The first one introduces the empirical and

ideal estimators least-squares f ls
z̃,λ and f ls

λ .

Proposition 4. Assume λ ≤ ‖T‖ and

λm̃ ≥ 16κN (λ) log2 6

δ
,(30)

for some δ ∈ (0, 1). Then, with probability greater than 1− δ, it holds(T + λ)
1
2 (f ls

z̃,λ − f ls
λ )

H
≤ 8

�
M +

r
κ

m

m̃

f ls
λ


H

� 
2

m

r
κ

λ
+

r
N (λ)

m

!
log

6

δ

where

f ls
z̃,λ = (Tx̃ + λ)−1gz,(31)

f ls
λ = (T + λ)−1LKfH.(32)

Proof. See Proposition 1 in [2]. ¤

The second one gives two simple properties of the operator T and the effective dimension
N (λ).

Proposition 5. For every probability measure ρX and λ > 0, it holds

‖T‖ ≤ κ,

and

λN (λ) ≤ κ.

Proof. See Proposition 2 in [2]. ¤

The other two propositions from [2] estimate two different terms which appear in the
proofs of Theorems 1 and 1. The symbol bxc in the text below represents the greater
integer less or equal to x.
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Proposition 6. Let f belong to Im Lr
K for some r > 0. Then, if λ ∈ (0, κ], it holds√T (Gλ(Tx̃) Tx̃ − Id) Pλf


H
≤ Br

L−r
K f


ρ
(1 +

√
γ)(2 + rγλ̇

3
2−r + γη)λr,

where Pλ is defined in eq. (23), and

γ = λ−1 ‖T − Tx̃‖ ,(33)

η = |r − 1

2
| − b|r − 1

2
|c.

Proof. See Proposition 6 in [2]. ¤

Proposition 7. Let the operator Ωλ be defined by

Ωλ =
√

TGλ(Tx̃) (Tx̃ + λ)(T + λ)−
1
2 .(34)

Then, if λ ∈ (0, κ], it holds

‖Ωλ‖ ≤ (1 + 2
√

γ) A,

with γ defined in eq. (33).

Proof. See Proposition 7 in [2]. ¤

We finally need the following probabilistic inequality based on a result of [14], see also
Th. 3.3.4 of [18]. We report it without proof.

Proposition 8. Let (Ω,F , P ) be a probability space and ξ be a random variable on Ω tak-
ing value in a real separable Hilbert space K. Assume that there are two positive constants
H and σ such that

‖ξ(ω)‖K ≤ H

2
a.s,

E[‖ξ‖2K] ≤ σ2,

then, for all m ∈ N and 0 < δ < 1,

(35) P(ω1,...,ωm)∼P m

" 1

m

mX
i=1

ξ(ωi)− E[ξ]


K
≤ 2

�
H

m
+

σ√
m

�
log

2

δ

#
≥ 1− δ.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us consider the expansion

√
T (fz̃,λ − fH) =

√
T
�
Gλ(Tx̃) gz − f tr

λ

�
+
√

T (f tr
λ − fH)

= Ωλ (T + λ)
1
2 (f ls

z̃,λ − f ls
z̃′,λ) +

√
T (Gλ(Tx̃) Tx̃ − Id) f tr

λ +
√

T (f tr
λ − fH)

= Ωλ

�
(T + λ)

1
2 (f ls

z̃,λ − f ls
λ ) + (T + λ)

1
2 (f ls

λ − f̄ ls
λ ) + (T + λ)

1
2 (f̄ ls

λ − f ls
z̃′,λ)

�
+
√

T (Gλ(Tx̃) Tx̃ − Id) f tr
λ +

√
T (f tr

λ − fH)

where the operator Ωλ is defined by equation (34), the ideal RLS estimators are f ls
λ =

(T +λ)−1TMfH and f̄ ls
λ = (T +λ)−1Tf tr

λ , and f ls
z̃′,λ = (Tx̃+λ)−1Tx̃f tr

λ is the RLS estimator
constructed by the training set

z̃′ = ((x̃1, f
tr
λ (x̃1)) . . . , (x̃m̃, f tr

λ (x̃m̃))).

Hence we get the following decomposition,

‖fz̃,λ − fH‖ρ ≤ D(z̃, λ)
�
Sls(z̃, λ) + R(λ) + S̄ls(z̃, λ)

�
+ P (z̃, λ) + P tr(λ),(36)
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with

Sls(z̃, λ) =
(T + λ)

1
2 (f ls

z̃,λ − f ls
λ )

H

,(37)

S̄ls(z̃, λ) =
(T + λ)

1
2 (f ls

z̃′,λ − f̄ ls
λ )

H

,

D(z̃, λ) = ‖Ωλ‖ ,

P (z̃, λ) =
√T (Gλ(Tx̃) Tx̃ − Id) f tr

λ


H

,

P tr(λ) =
f tr

λ − fH


ρ
,

R(λ) =
(T + λ)

1
2 (f̄ ls

λ − f ls
λ )

H

.

Terms Sls and S̄ls will be estimated by Proposition 4, terms P tr and R by Proposition
2, term D by Proposition 7, and finally term P by Propositions 6, 3 and 2.

Step 1: Estimate of Sls. Since L
1
2
K is an isometry between L2(X, ρX) and H (see [5]),

we obtain f ls
λ

 ≤ √T (T + λ)−1
 L 1

2
KfH


H
≤ ‖fH‖ρ√

λ
≤ M√

λ
.(38)

Now, let δ be an arbitrary real in (0, 1). From the assumptions on λm, for large enough
m, we have

λm

√
m ≥ 4κ log

6

δ
,

λm ≤ ‖T‖ .

Hence, by Proposition 5, for large enough m, the assumptions of Proposition 4 are verified,
and we get that with probability greater than 1− δ

Sls(z̃m, λm) ≤ 8

�
M +

r
κ

m

m̃m

f ls
λm


H

� 
2

m

r
κ

λm
+

r
N (λm)

m

!
log

6

δ

(Prop.5, eq. (38)) ≤ 8M

�
1 +

r
κ

λm

�
1√
m

�
2

r
κ

λmm
+

r
κ

λm

�
log

6

δ

(λm ≤ κ, m ≥ 4) ≤ 32Mκ

λm
√

m
log

6

δ
→ 0.

Hence it holds

lim
m→∞

Sls(z̃m, λm)
P
= 0.(39)

Step 2: Estimate of S̄ls. This term can be estimated observing that z̃′ is a training set
of m̃ supervised samples drawn i.i.d. from the probability measure ρ′ with marginal ρX

and conditional ρ′|x(y) = δ(y− f tr
λ (x)). Therefore the regression function induced by ρ′ is

fρ′ = f tr
λ , and the support of ρ′ is included in X× [−M ′, M ′], with M ′ = supx∈X fρ′(x) ≤√

κ
f tr

λ


H. Reasoning as in the analysis of Sls, we obtain that, for every δ ∈ (0, 1) and

large enough m, with probability greater than 1− δ it holds

S̄ls(z̃m, λm) ≤ 8
�
M ′ +

√
κ
f̄ ls

λm


H

� 2

m̃m

r
κ

λm
+

r
N (λm)

m̃m

!
log

6

δ

(Prop.5) ≤ 16
√

κ
f tr

λm


H

1√
m

�
2

r
κ

λmm
+

r
κ

λm

�
log

6

δ

(m ≥ 4) ≤ 32κ√
λmm

PλmL
− 1

2
K PλmfH


ρ

log
6

δ
≤ 32κM

λm
√

m
log

6

δ
→ 0.

Hence it holds

lim
m→∞

S̄ls(z̃m, λm)
P
= 0.(40)
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Step 3: Estimate of P tr. By definition (25), P tr(λ) = a(λ). Hence from eq. (27)

lim
m→∞

P tr(λm) = lim
m→∞

a(λm) = lim
λ→0

a(λ) = 0,(41)

where we used the assumption (6).

Step 4: Estimate of R. Since from the definitions of f ls
λ and f̄ ls

λ ,

R(λ) =
(T + λ)−

1
2 T (f̄ ls

λ − f ls
λ )

H
≤
√T (f tr

λ − fH)

H
≤ P tr(λ),

from (41) we get

lim
m→∞

R(λm) = 0.(42)

Step 5: Estimate of D. In order to estimate D(z̃, λ), we have first to estimate the
quantity γ = γ(z̃, λ) (see definition (33)) appearing in the Proposition 7. Our estimate
for γ(z̃, λ) follows from Proposition 8 applied to the random variable ξ : X → LHS(H)
defined by

ξ(x)[·] = λ−1Kx 〈Kx, ·〉H .

We can set H = 2κ
λ

and σ = H
2

, and obtain that, for every δ ∈ (0, 1) and m ≥ 4, with
probability greater than 1− δ

γ(z̃m, λ) ≤ λ−1 ‖T − Tx̃‖HS ≤
2

λ

�
2κ

m̃m
+

κ√
m̃m

�
log

2

δ
≤ 4

κ

λ
√

m
log

2

δ
=: ε(m, λ, δ).

From the expression of ε(m, λ, δ) we see that, by the assumption (7), for every δ ∈ (0, 1),

lim
m→∞

ε(m, λm, δ) = 0,

and hence,

lim
m→∞

γ(z̃m, λm)
P
= 0.(43)

Finally, from eq. (43) and Proposition 7 we find

D(z̃m, λm) ≤
�
1 + 2

p
γ(z̃m, λm)

�
A

P→ 3A.(44)

Step 6: Estimate of P . First, notice that by the definition (3), WLOG we can assume
r̄ < 1

2
. Moreover by condition (6), we can assume m large enough that λm ≤ κ. We

consider the function R introduced by Proposition 3, and apply Proposition 6, with f =
PλmfH and rm = R(κ−1λm) ≤ r̄, getting

P (z̃m, λm) ≤ Br̄

�
1 + γ(z̃m, λm)

1
2

��
2 + rmγ(z̃m, λm) + γ(z̃m, λm)

1
2−rm

�
κrm

L−rm
K PλmfH


ρ
(κ−1λm)rm .

This result together with eq. (43), and recalling that by Proposition 3 and assump-
tion (6), the sequence {rm}m verifies the two conditions

κrm
L−rm

K PλmfH


ρ
≤ 4M ∀m,

lim
m→∞

(κ−1λm)rm = 0,

proves that

lim
m→∞

P (z̃m, λm)
P
= 0.(45)

The proof of the Theorem is completed considering the limit m →∞ of estimate (36),
and using equations (39), (40), (41), (42), (44) and (45).

¤
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4.2. Before showing the proof of Theorem 2, we state two propositions from [2] which de-
scribe properties of the functions f tr

λ and f ls
λ (defined in eq. (22) and eq. (32) respectively)

when fH ∈ Im Lr
K .

Proposition 9. Let fH ∈ Im Lr
K for some r > 0. Then, the following estimates hold,f tr

λ − fH


ρ
≤ λr

L−r
K fH


ρ
,f tr

λ


H ≤

(
λ−

1
2+r

L−r
K fH


ρ

if r ≤ 1
2
,

κ−
1
2+r

L−r
K fH


ρ

if r > 1
2
.

Proof. See Proposition 3 in [2]. ¤

Proposition 10. Let fH ∈ Im Lr
K for some r > 0. Then, the following estimates hold,f ls

λ − fH


ρ
≤ λr

L−r
K fH


ρ
, if r ≤ 1f ls

λ


H

≤
(

λ−
1
2+r

L−r
K fH


ρ

if r ≤ 1
2
,

κ−
1
2+r

L−r
K fH


ρ

if r > 1
2
.

Proof. See Proposition 1 in [2]. ¤

We are now ready to prove Theorem 2.

Proof of Theorem 2. We consider the same decomposition (see equations (36) and (37))
for ‖fz̃,λ − fH‖ρ that we used in the proof of Theorem 1.

Terms Sls and S̄ls will be estimated by Proposition 4, term D by Proposition 7, term
P by Proposition 6 and finally terms P tr and R by Proposition 9.

Let us begin with the estimates of Sls and S̄ls. First observe that, by Proposition 5, it
holds

λ̇ ≤ κ−1 ‖T‖ ≤ 1,

therefore, since by assumption m̃ ≥ mλ̇−|2−2r−s|++t1 ≥ mλ̇−|1−2r|++t1 , we get,

λ̇m̃ ≥ λ̇−|1−2r|++1+t1m ≥ λ̇2r+t1m.

Moreover, by eq. (8) and definition (5), we find

λ̇2r+t1m = 16q2r+s+t1D2
s λ̇−s log2 6

δ
≥ 16N (λ) log2 6

δ
,

hence the hypothesis (30) in the text of Proposition 4 is verified.
Regarding the estimate of Sls. Applying Proposition 4 and recalling that by assump-

tion m̃ ≥ mλ̇−|2−2r−s|++t1 ≥ mλ̇−|1−2r|++t1 and from Proposition 10,
√

κ
f ls

λ


H ≤

Crλ̇
−| 12−r|+ , we get that with probability greater than 1− δ

Sls(z̃, λ) ≤ 8

�
M +

r
m

m̃
Crλ̇

−| 12−r|+
� 

2

m

r
κ

λ
+

r
N (λ)

m

!
log

6

δ
(46)

≤ 8(M + λ̇−
t1
2 Cr)

1√
m

 
2p
mλ̇

+
Dsp
λ̇s

!
log

6

δ

(eq. (8)) = 2q−r− s
2−

t1
2 (M + Cr)λ̇

r

 
1 +

λ̇−
1
2 (1−2r−2s−t1)

2qr+ s
2+

t1
2 D2

s log 6
δ

!
(t1 ≥ 0, q ≥ 1) ≤ 3q−r− s

2−
t1
2 (M + Cr)λ̇

r− t2
2

(q ≥ 1) ≤ 3(M + Cr)λ̇
r− t2

2 .
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The term S̄ls can be estimated observing that z̃′ is a training set of m̃ supervised
samples drawn i.i.d. from the probability measure ρ′ with marginal ρX and conditional
ρ′|x(y) = δ(y − f tr

λ (x)). Therefore the regression function induced by ρ′ is fρ′ = f tr
λ , and

the support of ρ′ is included in X × [−M ′, M ′], with M ′ = supx∈X fρ′(x) ≤ √
κ
f tr

λ


H.

Again applying Proposition 4, we obtain that with probability greater than 1− δ it holds

S̄ls(z̃, λ) ≤ 8
�
M ′ +

√
κ
f̄ ls

λ


H

� 2

m̃

r
κ

λ
+

r
N (λ)

m̃

!
log

6

δ
(47)

≤ 16
√

κ
f tr

λ


H

 
2

m̃

r
κ

λ
+

r
N (λ)

m̃

!
log

6

δ

(Prop.9) ≤ 16

r
m

m̃
Crλ̇

−| 12−r|+
 

2

m

r
κ

λ
+

r
N (λ)

m

!
log

6

δ

≤ 16Cr
λ̇−

t1
2√

m

 
2p
mλ̇

+
Dsp
λ̇s

!
log

6

δ

(eq. (8)) = 4q−r− s
2−

t1
2 Crλ̇

r

 
1 +

λ̇−
1
2 (1−2r−2s−t1)

2qr+ s
2+

t1
2 D2

s log 6
δ

!
(t1 ≥ 0, q ≥ 1) ≤ 6q−r− s

2−
t1
2 Crλ̇

r− t2
2

(q ≥ 1) ≤ 6Crλ̇
r− t2

2 .

In order to get an upper bound for D and P , we have first to estimate the quantity
γ = γ(z̃, λ) (see definition (33)) appearing in the Propositions 6 and 7. Our estimate for
γ(z̃, λ) follows from Proposition 8 applied to the random variable ξ : X → LHS(H) defined
by

ξ(x)[·] = λ−1Kx 〈Kx, ·〉H .

We can set H = 2κ
λ

and σ = H
2

, and obtain that with probability greater than 1− δ

γ(z̃, λ) ≤ λ−1 ‖T − Tx̃‖HS ≤
2

λ

�
2κ

m̃
+

κ√
m̃

�
log

2

δ
≤ 4

1

λ̇
√

m̃
log

2

δ

≤ 4
λ̇
|1−r− s

2 |+−1− t1
2

√
m

log
2

δ
≤ λ̇

|1−r− s
2 |+−(1−r− s

2 ) ≤ λ̇
|r+ s

2−1|+ ≤ 1,

where we used the assumption m̃ ≥ 4 ∨mλ̇−|2−2r−s|++t1 and the expression for λ̇ in the
text of the Theorem.

Hence, since γ(z̃, λ) ≤ λ̇
|r+ s

2−1|+ , from Proposition 7 we get

D(z̃, λ) ≤ (1 + 2
√

γ)A ≤ 3A,(48)

and from Proposition 6

P (z̃, λ) ≤ BrCr(1 +
√

γ)(2 + rγλ̇
3
2−r + γη)λ̇r(49)

≤ 2BrCr(3 + rγλ̇
3
2−r)λ̇r

≤ 2BrCr(3 + rλ̇
|r+ s

2−1|++ 3
2−r

)λ̇r

≤ 2BrCr(3 + rλ̇
s+1
2 )λ̇r ≤ 2BrCr(3 + r)λ̇r.

Regarding terms P tr and R. From Proposition 9 we get

P tr(λ) ≤ Crλ̇
r,(50)
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and hence,

R(λ) =
(T + λ)−

1
2 T (f̄ ls

λ − f ls
λ )

H

(51)

≤
√T (f̄ ls

λ − f ls
λ )

H
≤ P tr ≤ Crλ̇

r.

The proof is completed by plugging inequalities (46), (47), (48), (49), (50) and (51)

in (36), recalling the expression for λ̇. ¤

5. Proof of Theorem 3

The following result is due to [13], adapted to a suitable form used in this paper.

Proposition 11. Let {Xi}n
i∈1 be a set of real valued i.i.d. random variables with mean µ,

|Xi| ≤ B and E[(Xi − µ)2] ≤ σ2, for all i ∈ {1, . . . , n}. Then for arbitrary α > 0, ε > 0,

P

"
1

n

nX
i=1

Xi − µ ≥ ασ2 + ε

#
≤ e−

6nαε
3+4αB ,(52)

and

P

"
µ− 1

n

nX
i=1

Xi ≥ ασ2 + ε

#
≤ e−

6nαε
3+4αB .(53)

Proof. It suffices to prove the one side inequality (52). For any s > 0,

P

"
1

n

nX
i=1

Xi − µ ≥ ασ2 + ε

#
= P

h
e

s
n

Pn
i=1(Xi−µ) ≥ es(ασ2+ε)

i
≤ e−sε−sασ2

Ee
s
n

Pn
i=1(Xi−µ), by Markov inequality

= e−sε−sασ2
nY

i=1

Ee
s
n

(Xi−µ), by independence of Xi

Denote Zi = Xi − µ, t = s/n and B1 = 2B. Thus for those s such that sB < 3n/2 (or
equivalently B1t/3 < 1),

EetZi = 1 +

∞X
k=1

tk

k!
E[Zk

i ] ≤ 1 + 0 +

∞X
k=2

tk

k!
Bk−2

1 σ2 ≤ 1 +
t2σ2

2

∞X
k=0

�
B1t

3

�k

= 1 +
3t2σ2

6− 4Bt
≤ exp

�
3t2σ2

6− 4Bt

�
= exp

�
3s2σ2

n2(6− 4sB/n)

�
whence

e−sε−sασ2
nY

i=1

Ee
s
n

(Xi−µ) ≤ e−sε exp

�
sσ2

n

�
3s

6− 4sB/n
− nα

��
.

Setting s = s0 =
6αn

3 + 4αB
(one can check that s0B = 6nαB

3+4αB
< 3n/2), we have 3s0

6−4s0B/n
−

nα = 0 and thus r.h.s. ≤ e−s0ε = exp

�
− 6nαε

3 + 4αB

�
, which gives estimate (52). ¤

We are now ready to prove Theorem 3.

Proof of Theorem 3. The strategy of the proof is the following. Define

λ∗m = argmin
λ∈Λm

Z
Z

(TMfz̃,λ(x)− y)2dρ.(54)

Notice that, since for every f ∈ L2(X, ρX),Z
Z

(f(x)− y)2dρ = ‖f − fρ‖2ρ +

Z
Z

(fρ(x)− y)2dρ,
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definition (54) of λ∗m, is equivalent to

λ∗m = argmin
λ∈Λm

‖TMfz̃,λ − fρ‖ρ .

Now, from the equality above, the assumption of the Theorem, and recalling that
fρ(x) ∈ Y ⊂ [−M, M ], we get that with probability greater than 1− δ it holdsTMfz̃,λ∗m − fρ


ρ
≤ ‖TMfz̃,λm − fρ‖ρ ≤ ‖fz̃,λm − fρ‖ρ ≤ ε.(55)

We claim that for every z̃, λ > 0 and δ ∈ (0, 1), with probability greater than 1 − δ

over the probability measure ρmv
, it holds

‖fztot − fρ‖2ρ ≤ 2
TMfz̃,λ∗m − fρ

2

ρ
+

80M2

mv
log

2 |Λm|
δ

.(56)

Estimates (55) and (56) together will complete the proof of the Theorem.
We now proceed to proving eq. (56). For i = 1, . . . , mv, let us define the random

variables

ξλ
i = (TMfz̃,λ(xv

i )− yv
i )2 − (fρ(x

v
i )− yv

i )2 .

Clearly

|ξλ
i | ≤ 4M2,

E[ξλ
i ] =

Z
Z

(TMfz̃,λ(x)− y)2 dρ−
Z

Z

(fρ(x)− y)2 dρ = ‖TMfz̃,λ − fρ‖2ρ ,

E[(ξλ
i )2] =

Z
Z

(TMfz̃,λ(x)− fρ(x))2 (TMfz̃,λ(x) + fρ(x)− 2y)2 dρ

≤ 16M2 ‖TMfz̃,λ − fρ‖2ρ = 16M2E[ξλ
i ].

Hence, using Proposition 11 with Xi = ξλ
i , µ = E[ξλ

i ], B = 4M2 and σ2 = E[(ξλ
i )2] ≤

16M2µ, we obtain that for all λ ∈ Λm with probability greater than 1− δ,

1

mv

mvX
i=1

ξλ
i ≤ (1 + α′)E[ξλ

i ] + ε,

and

E[ξλ
i ] ≤ 1

1− α′

 
1

mv

mvX
i=1

ξλ
i

!
+

ε

1− α′
,

where α′ = 16αM2 and ε =
3 + α′

6αmv
log

2 |Λm|
δ

. Therefore

‖fztot − fρ‖2ρ = E[ξ
λ̂zv
i ] ≤ 1

1− α′

 
1

mv

mvX
i=1

ξ
λ̂zv
i

!
+

ε

1− α′

≤ 1

1− α′

 
1

mv

mvX
i=1

ξ
λ∗m
i

!
+

ε

1− α′

≤ 1 + α′

1− α′
E[ξ

λ∗m
i ] +

2ε

1− α′

=
1 + α′

1− α′
TMfz̃,λ∗m − fρ

2

ρ
+

2ε

1− α′
.

Setting α = 1/(48M2), this gives α′ = 1/3 and

‖fztot − fρ‖2ρ ≤ 2
TMfz̃,λ∗m − fρ

2

ρ
+

80M2

mv
log

2 |Λm|
δ

,

which proves eq. (56), as desired.
¤
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